

Spectroscopy, Modelisation, Interfaces for LifE Sciences

Chemistry of Condensed Matter in Paris

Nuclear Magnetic Resonance and Biomineralization

Thierry Azaïs

Biomin & Biomat Confined Seminar

Spin: intrinsic quantum property associated to nuclei which corresponds to the rotation of the particle characterized by an **angular momentum** \vec{I}

The rotation of the nuclei induces a small magnetic field called **nuclear magnetic moment** $\vec{\mu}$

 $\hbar = h/2\pi = 1,054.10^{-34} \text{ J.s}$ h : Planck constant (6,626.10⁻³⁴ J.s)

Angular velocity depending on the magnetic field

I: Nuclear quantic number associated to the angular momentum

if I = 0 No NMR !!!

> The **nuclear spin** I determines the number of different states (aka orientations) that a nucleus can adopt in the presence of an **external magnetic field B**₀.

> 2*I* + 1 states are defined and characterized by the magnetic quantic number m_{τ}

 \succ as a consequence the possible values of m_{I} are the following

 $-I \leq m_I \leq +I$ with $\Delta m_I = 1$

I = 1/2Ex : ¹H, ¹³C, ²⁹Si, ³¹P... $m_I = +1/2$ and -1/2

Similarly for an electron S = 1/2 $m_s = +1/2$ and -1/2

