

principles

NMR 3. Isotopes

 $ΔE$ does not depend on *I!*

Nevertheless **NMR is nucleus selective** because of the gyromagnetic ratio !

NMR 4. Sensitivity and Magnetic field

So the sensitivity increases with B_0 !!!

5. Sensitivity and Macroscopic magnetizationNMR principles Needs of intense B_0 magnetic fields to increase the sensitivity Superconducting magnet $v_0 = \gamma B_0 / 2\pi$ **Helium ports Helium tower** $\gamma(^1\text{H}) = 26.7519.10^7 \text{ rad T}^{-1} \text{ s}^{-1}$ Nitrogen ports Nitrogen tower v_0 ⁽¹H) (MHz) \mathbf{B}_0 (T) Insert sample here Metal plug **7 300** Vacuum Chamber **14 600** He $\frac{B}{C}$ **~ 5 m** N **BRUKKI 21 900** 1000 He N **23.5 1000 Magnet** *B0* Earth's magnetic field = 5.10^{-6} T **Insert Probe here** At the right center of the coil B_{0} is \overline{a}

static, vertical and homogeneous

Sensitivity : value relative to the proton considering 100% natural abundance.

$$
S = (\gamma_X / \gamma_{1H})^3 \frac{(I_X + 1)I_X}{(I_{1H} + 1)I_{1H}}
$$

$$
\begin{aligned}\n&\text{Example} \\
^1\text{H}: I=1/2, \ \gamma = 26,7519.10^7 \text{ rad } T^{-1} \text{ s}^{-1} \rightarrow S = 1 \\
^3\text{H}: I=1/2, \ \gamma = 28.535.10^7 \text{ rad } T^{-1} \text{ s}^{-1} \rightarrow S = 1.21 \\
^{19}\text{F}: I=1/2, \ \gamma = 25.181.10^7 \text{ rad } T^{-1} \text{ s}^{-1} \rightarrow S = 0.83\n\end{aligned}
$$
\n
$$
^{31}\text{P}: I=1/2, \ \gamma = 10,841.10^7 \text{ rad } T^{-1} \text{ s}^{-1} \rightarrow S = 0.066
$$
\n
$$
^{13}\text{C}: I=1/2, \ \gamma = 6,7283.10^7 \text{ rad } T^{-1} \text{ s}^{-1} \rightarrow S = 0.016
$$
\n
$$
^{29}\text{Si}: I=1/2, \ \gamma = -5.3188.10^7 \text{ rad } T^{-1} \text{ s}^{-1} \rightarrow S = 7,86.10^{-3}
$$

The proton is the most NMR sensitive nucleus

Sensitivity decreases quickly as soon as γ decreases because of $(1/\gamma)^3$

principles

NMR 5. Receptivity

$$
D = (\gamma_X / \gamma_{1H})^3 \frac{(ab.nat.)_X (l_X + 1)l_X}{(ab.nat.)_{1H} (l_{1H} + 1)l_{1H}}
$$

Takes into account the natural abundance !

spins 1/2 $1H: 100\% \text{ NA} \rightarrow \text{D} = 1$

 $3H:0\%$ NA \rightarrow D = 0

 $19F : 100\%$ NA \rightarrow D = 0,834

 $31P: 100\% \text{ NA} \rightarrow \text{D} = 0.0665$

 $13C : 1.1\%$ NA \rightarrow D = 1.76.10⁻⁴

 29Si : 4.7% NA \rightarrow D = 3.69.10⁻⁴ 57 Fe : 2,2% NA $(y = 0.87.10^7 \text{ rad T}^{-1})^{-1}$ \rightarrow D = 7,43.10⁻⁷ ... *Difficult…* **Low y nucleus**

Quadrupolar spins 27 Al : I = 5/2; 100% NA \rightarrow D = 0.207

 17 **O** : **I** = 5/2; 0,037% NA \rightarrow D = 1,08.10⁻⁵

 43 Ca : I = 7/2; 0,145% NA \rightarrow D = 8,67.10⁻⁶

Difficult…

N : number of spins

Problem : M_0 is hidden in the static magnetic field B_0 (~10⁻⁶ of B_0)

Impossible to measure directly !!!

How to measure it ???

Interaction of two magnetic moments. What happens to the magnetization $\bar{\mathsf{M}}_0$ in the presence of a static magnetic field $\overline{\mathsf{B}_0}$?

From the theorem of angular momentum, we know that there is a **time dependence** as follow :

At the thermodynamic equilibrium, B and M are collinear to the z axis

NMR 7. Concept of precession

Out of the thermodynamic equilibrium : \overrightarrow{M} is tilted from \overrightarrow{B} by an angle α

Then the initial conditions are

principles

$$
Mx(0) = 0
$$

$$
My(0) = M_0 \sin \alpha
$$

$$
Mz(0) = M_0 \cos \alpha
$$

If we solve the differential equations

The movement equations describe a **rotation of M** in the (xy) plane at the **angular rate** $\omega_0 = \gamma B_0$ The associated angular frequency is then $v_0 = \gamma B_0 / 2\pi$ i.e. the **Larmor frequency !**

NMR 7. Concept of precession

Goal of the NMR experiment : put \overrightarrow{M} out of the equilibrium

Best efficiency if $\alpha = 90^{\circ}$

If we apply a **strong B¹ radio-frequency field** perpendicular to B₀ along the x axis then we induce a **rotation of M around the x axis**

The frequency of the B $_1$ field must be v_1 = v_0 (Larmor **frequency)**

If α = 90° it is called a "90° pulse" or " π pulse"

The time to reach the (xy) plane is called t_{90} ^o

Usually, $t_{90°}$ = from 1 to 10 µs

The movement equations are becoming :

```
Mz(t) = M_0 \cos \alpha\LeftrightarrowMx(t) = M_0 \sin(\gamma B_0 t)My(t) = M_0 cos(yB<sub>0</sub>t)
                                                                      Mz(t) = 0
```
NMR 7. Concept of precession

If we switch off $\overline{\mathbf{B}_1}$, $\overline{\mathbf{M}}$ start rotating in the (xy) plane at the $\mathbf{v_0}$ frequency (Larmor **frequency).**

The macroscopic magnetization M is now measurable !

The variation of M inside a coil gives rise to an oscillating electric field !

Beware : the coil generating B_1 is different from the one generating B_0

The coil generating B_1 is the same as the coil allowing the recording of the NMR signal.