There is no perpetual motion. The system tends to go back the thermodynamic equilibrium

Two phenomenon coexist:

The longitudinal relaxation time (or spin-lattice relaxation) characterized by T₁ parameter.

 \succ The transverse relaxation time (or spin-spin relaxation) characterized by $\mathrm{T_2}$ parameter

T₁ relaxation: return of M along the z axis (longitudinal or spin-lattice relaxation)

Evolution of the magnetization under T_1

 T_2 relaxation: loss of the magnetization in the (xy) plane (transverse or spin-spin relaxation).

In a real sample, the magnetization is composed of numerous individual M_i corresponding to all the spins *I* involved in the experiment. **The magnetization tends to 0**

Because all the spins do not precess at the same frequency !

 τ_c : Correlation time.

For a spherical molecule, average time to do a rotation of 1 rad.

Solution state : $T_2 \approx T_1$ few seconds

Solid state : $T_2 \leq T_1$

 T_1 can be very long. ¹H : up to 60s

²⁹Si : up to 1h for quartz !

T₂ very small : 10 – 100 μs

NMR principles

8. Relaxation

The movement equations are becoming :

 $\pi/2$ without relaxation

$\pi/2$ with relaxation

 $M_{x}(t) = M_{0} \sin(2\pi v_{0}t)$ $M_{y}(t) = M_{0} \cos(2\pi v_{0}t) \iff \begin{cases} M_{x} = M_{0} \exp(-t/T_{2})\sin(2\pi v_{0}t) \\ M_{y} = M_{0} \exp(-t/T_{2})\cos(2\pi v_{0}t) \\ M_{z} = M_{0} \left[1 - \exp(-t/T_{1})\right] \end{cases}$

Decreases as a function of time Decreases as a function of time Increases as a function of time

Damped sinosoïd

Damped cosinosoïd

9. Summary of the NMR experiment

NMR

10. Signal acquisition NMR principles FID (Free Induction Decay) few µs **Dead time** T₉₀ (T_2) few µs AAA AAAA AQ N times **5.T**₁ 10 µs – 1 ms min – days ! 1 – 100 s Absolute Normalized scale scale 1 transient Final signal = addition of N FIDs Signal : coherent addition 2 transients Bruit : incoherent addition 10 transients Signal/Noise ratio ~ \sqrt{N} 50 transients 100 transients 500 transients 23 Levitt, Spin dynamics, 2002.